Rapid high-resolution MHC class I genotyping of Chinese rhesus macaques by capillary reference strand-mediated conformational analysis

Author: Blasky Alex  

Publisher: Springer Publishing Company

ISSN: 0093-7711

Source: Immunogenetics, Vol.60, Iss.10, 2008-10, pp. : 575-584

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

Rhesus macaques (Macaca mulatta) provide well-established models for studying human disease pathogenesis and vaccine development. When challenged with infectious agents, macaques exhibit individual differences in susceptibility. An important determinant of these differences is the complement of major histocompatability complex (MHC) class I sequences expressed by each animal. Although previous studies have reported strong associations between MHC expression and disease outcome, a rapid, cost-effective method for high-resolution MHC genotyping in macaques is lacking. In this study, we adapted a modified heteroduplex assay, reference strand-mediated conformational analysis (RSCA) to an ABI 3130xl capillary electrophoresis genetic analyzer for macaque MHC class I genotyping. For validation, we investigated the concordance of RSCA genotyping for 14 MHC class I sequences in 12 Chinese rhesus macaques whose genotypes were established through complementary DNA cloning and sequencing of MHC class I sequences. We observed a concordance greater than 98% between RSCA and the cloning and sequencing data. Furthermore, RSCA confirmed the presence of MHC haplotype sharing between three macaques as predicted previously by microsatellite analysis. RSCA genotyping of an additional 25 Chinese rhesus macaques demonstrated that the frequency of these 14 MHC class I sequences ranged from 5% to 32%, with the Mamu-A1*2601 sequence being most common in this cohort. Capillary RSCA genotyping has the potential to enable researchers to rapidly evaluate MHC class I genotypes in rhesus macaques and associate specific MHC sequences with disease susceptibility.

Related content