Author: Crockett Elizabeth
Publisher: Springer Publishing Company
ISSN: 0174-1578
Source: Journal of Comparative Physiology B, Vol.178, Iss.7, 2008-09, pp. : 795-809
Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.
Abstract
The production of reactive oxygen species is a regular feature of life in the presence of oxygen. Some reactive oxygen species possess sufficient energy to initiate lipid peroxidation in biological membranes, self-propagating reactions with the potential to damage membranes by altering their physical properties and ultimately their function. Two of the most prominent patterns of lipid restructuring in membranes of ectotherms involve contents of polyunsaturated fatty acids and ratios of the abundant phospholipids, phosphatidylcholine and phosphatidylethanolamine. Since polyunsaturated fatty acids and phosphatidylethanolamine are particularly vulnerable to oxidation, it is likely that higher contents of these lipids at low body temperature elevate the inherent susceptibility of membranes to lipid peroxidation. Although membranes from animals living at low body temperatures may be more prone to oxidation, the generation of reactive oxygen species and lipid peroxidation are sensitive to temperature. These scenarios raise the possibility that membrane susceptibility to lipid peroxidation is conserved at physiological temperatures. Reduced levels of polyunsaturated fatty acids and phosphatidylethanolamine may protect membranes at warm temperatures from deleterious oxidations when rates of reactive oxygen species production and lipid peroxidation are relatively high. At low temperatures, enhanced susceptibility may ensure sufficient lipid peroxidation for cellular processes that require lipid oxidation products.
Related content
By Araneda O. Urbina-Stagno R. Tuesta M. Haichelis D. Alvear M. Salazar M. García C.
Journal of Physiology and Biochemistry, Vol. 70, Iss. 1, 2014-03 ,pp. :