Synthesis and thermal characterization of poly(ester-ether urethane)s based on PHB and PCL-PEG-PCL blocks

Author: Naguib Hala  

Publisher: Springer Publishing Company

ISSN: 1022-9760

Source: Journal of Polymer Research, Vol.18, Iss.5, 2011-09, pp. : 1217-1227

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

A series of block poly(ester-ether urethane)s, poly(PHB/PCL-PEG-PCL), based on poly(3-hydroxybutyrate) (PHB-diol), as hard segments, and poly(ε-caprolactone)-b-poly(ethylene glycol)-b-poly(ε-caprolactone), (PCL-PEG-PCL) triblock copolydiol, as soft segments, were prepared using 1,6-hexamethylene diisocyanate (HDI), as non-toxic connecting agent. Polyurethanes block copolymer was synthesized from bacterial PHB and PCL-PEG-PCL blocks. The chemical structure and molecular weights of polymers prepared were characterized by FTIR, 1H NMR and GPC. The effect of chemical structure on the thermal and mechanical properties was studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and tensile testing. The DSC results revealed that poly(PHB/PCL-PEG-PCL) urethanes are semi-crystalline with two crystallizable PHB and PCL-PEG-PCL blocks. The thermal stability of the urethanes is less than neat PHB. The results of tensile testing showed that the extensibility of PHB is largely enhanced by the incorporation of PCL-PEG-PCL soft segments. Activation energy E a , as a kinetic parameter of thermal decomposition, was estimated by each of the Ozawa and Kissinger methods. Close values of activation energy were obtained by both methods. The swelling behaviour of the copolymers was also investigated.