Average optimality inequality for continuous-time Markov decision processes in Polish spaces

Author: Zhu Quanxin  

Publisher: Springer Publishing Company

ISSN: 1432-2994

Source: Mathematical Methods of Operations Research, Vol.66, Iss.2, 2007-10, pp. : 299-313

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

In this paper, we study the average optimality for continuous-time controlled jump Markov processes in general state and action spaces. The criterion to be minimized is the average expected costs. Both the transition rates and the cost rates are allowed to be unbounded. We propose another set of conditions under which we first establish one average optimality inequality by using the well-known “vanishing discounting factor approach”. Then, when the cost (or reward) rates are nonnegative (or nonpositive), from the average optimality inequality we prove the existence of an average optimal stationary policy in all randomized history dependent policies by using the Dynkin formula and the Tauberian theorem. Finally, when the cost (or reward) rates have neither upper nor lower bounds, we also prove the existence of an average optimal policy in all (deterministic) stationary policies by constructing a “new” cost (or reward) rate.