Pick-up Ion Measurements in the Heliosphere – A Review

Author: Kallenbach R.  

Publisher: Springer Publishing Company

ISSN: 0004-640X

Source: Astrophysics and Space Science, Vol.274, Iss.1-2, 2000-01, pp. : 97-114

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

Measurements of the composition and spatial distribution of pick-up ions inside the heliosphere are reviewed. The first interstellar ^4He^+pick-up ions were detected with the SULEICA instrument on the AMPTE spacecraft near Earth's orbit. Most data on pick-up ions were taken in the solar-wind and suprathermal energy range of SWICS on Ulysses while the spacecraft cruised from 1.4 to 5.4 AU and explored the high-latitude heliosphere and solar wind from the ecliptic to ± 80^° heliolatitude. This includes the discovery of H^+, ^4He^++, ^3He^+, N^+, O^+, and Ne^+ pick-up ions that originate from the interstellar neutral gas penetrating the heliosphere. From their fluxes properties of the interaction region between the heliosphere and the Local Interstellar Cloud such as the limits on filtration and the strength of the interstellar magnetic field have been revealed. Detailed analysis of the velocity distributions of pick-up ions led to 1) the discovery of a new distinct source, the so-called Inner Source, consisting of atoms released from interstellar and interplanetary dust inside the heliosphere, 2) the determination of pick-up ion transport parameters such as the long mean free path for pitch-angle scattering of order 1 AU, and 3) detailed knowledge on the very preferential injection and acceleration of pick-up ions during interplanetary energetic particle events such as Co-rotating Interaction Regions and Coronal Mass Ejections. SWICS measurements have fully confirmed the theory of Fisk, Koslovsky, and Ramaty that pick-up ions derived from the interstellar gas are the dominant source of the Anomalous Cosmic Rays; they are pre-accelerated inside the heliosphere and re-accelerated at the solar-wind Termination Shock according to Pesses, Eichler, and Jokipii. The data indicate that the Inner Source of pick-up ions is largely responsible for the occurence of C^+ in the Anomalous Cosmic Rays. The abundances of recently discovered Inner-Source Mg^+ and Si^+ are solar-wind like and consistent with their abundances in the energetic particles associated with Co-rotating Interaction Regions. Knowledge on the injection and acceleration processes in Co-rotating Interaction Regions is applied to discuss the current observational evidence for the Interplanetary Focusing Cone of the interstellar neutral gas due to the Sun's gravitational force. The 25–150 keV/amu suprathermal ^4He^+ pick-up ion fluxes measured by CELIAS/STOF on board SOHO over 360^° of ecliptic longitude represent a `local' ionization and acceleration of interstellar atoms at 1 AU or smaller heliocentric distances. Completing the first limited data set of SULEICA/AMPTE on ^4He^+ pick-up ions they indicate a density enhancement in the Interplanetary Focusing Cone which is confirmed by recent SWICS/ACE data. Clear evidence for signatures in ecliptic longitude are found in the data on energetic neutral H fluxes observed with the CELIAS/HSTOF sensor on board SOHO. These fluxes are enhanced in the upstream and downstream directions of the interstellar wind. Detection of energetic H atoms, which propagate unaffected by the Heliospheric Magnetic Field, provided for the first time a diagnostic tool for observations near Earth to analyze the structure in ecliptic longitude of the interface region between the heliosphere and the Local Interstellar Cloud.