

Author: Palomo Francisco
Publisher: Springer Publishing Company
ISSN: 0232-704X
Source: Annals of Global Analysis and Geometry, Vol.38, Iss.2, 2010-08, pp. : 135-144
Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.
Abstract
Related content


On Flat Complete Causal Lorentzian Manifolds
Geometriae Dedicata, Vol. 116, Iss. 1, 2005-12 ,pp. :


On conformally flat contact metric manifolds
Journal of Geometry, Vol. 79, Iss. 1-2, 2004-04 ,pp. :


Projective Vector Fields on Lorentzian Manifolds
Geometriae Dedicata, Vol. 93, Iss. 1, 2002-08 ,pp. :


Complete Flat Affine and Lorentzian Manifolds
By Charette V. Drumm T. Goldman W. Morrill M.
Geometriae Dedicata, Vol. 97, Iss. 1, 2003-03 ,pp. :


Volume Comparison Theorems for Lorentzian Manifolds
By Ehrlich P.E. Jung Y-T. Kim S-B.
Geometriae Dedicata, Vol. 73, Iss. 1, 1998-11 ,pp. :