Bromocriptine and clozapine regulate dopamine 2 receptor gene expression in the mouse striatum

Author: Stonehouse Anthony   Jones Frederick  

Publisher: Humana Press, Inc

ISSN: 0895-8696

Source: Journal of Molecular Neuroscience, Vol.25, Iss.1, 2005-02, pp. : 29-36

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

In a previous study, we showed that the psychoactive drug caffeine alters the expression of the dopamine 2 receptor (D2R) gene in vitro and in vivo. Here, we report that acute administration of antipsychotic and antiparkinsonian drugs also regulate D2R gene expression in PC12 cells and in the mouse striatum. Treatment of PC12 cells with the atypical antipsychotic and specific 5-HT antagonist clozapine (60µM) reduced D2R/luciferase reporter expression by 46% after 24 h. However, male and female mice treated with a clinical dose of clozapine (10 mg/kg) showed no changes in striatal D2R mRNA expression when assayed by quantitative RT-PCR. Treatment of PC12 cells with the specific D2R agonist anti-parkinsonian drug, bromocriptine mesylate (BCM; 5µM) also resulted in decreased D2R/luciferase reporter activity (27%). In contrast to clozapine, a clinical dose of BCM (16 mg/kg) led to a 21% decrease and a 45% increase in striatal D2R mRNA expression in male and female mice, respectively, after 24 h. Coadministration of clozapine and BCM in PC12 cells resulted in a synergistic decrease in D2R/luciferase reporter expression (68%), and coadministration of these drugs in vivo led to decreases in striatal D2R mRNA expression in both male and female mice (45% and 22%, respectively). Collectively, these results indicate that clozapine, BCM, or a combination of these drugs have differential effects on dopamine receptor gene expression and might also affect striatal physiology in a sexually dimorphic manner.

Related content