Doxorubicin cardiac dysfunction: Effects on calcium regulatory proteins, sarcoplasmic reticulum, and triiodothyronine

Author: Olson Richard   Gambliel Hervé   Vestal Robert   Shadle Susan   Charlier Henry   Cusack Barry  

Publisher: Humana Press, Inc

ISSN: 1530-7905

Source: Cardiovascular Toxicology, Vol.5, Iss.3, 2005-09, pp. : 269-283

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

Utilizing a model of chronic doxorubicin cardiomyopathy, this study examines the relationship between changes in expression and function of calcium handling proteins and contractile dysfunction. Apossible mechanism to account for this relationship is suggested. New Zealand white rabbits were injected with either doxorubicin (1 mg/kg, twice weekly for 8 wk) or 0.9% NaCl. Gene transcript, protein levels, and the function of several proteins from the left ventricle were assessed. Protein levels of sarcoplasmic reticulum (SR) Ca2+ transporting ATPase (SERCA2a and b), Ca2+ release channel (RYR2), calsequestrin, Na/Ca exchanger, mRNA levels of RYR2, and [3H]-ryanodine binding (Bmax) to RYR2 were significantly decreased in doxorubicin-treated rabbits; protein levels of phospholamban, dihydropyridine receptor α2 subunit, and SR Ca2+ loading rates were not decreased. However, only protein levels of SERCA2 and RYR2, mRNA levels of RYR2, and Bmax of RYR2 significantly regressed with left-ventricular fractional shortening. Analysis of contractile function of atrial preparations isolated from doxorubicin-treated rabbits revealed that doxorubicin diminished contractility (dF/dt) of rest-potentiated contractions consistent with SR dysfunction. Serum concentrations of free triiodothyronine (T3) decreased in doxorubicin-treated rabbits. Our results suggest that chronic doxorubicin administration in the rabbit causes a SR-dependent contractile dysfunction that may result, in part from decreased T3.

Related content