

Author: Xiao Benneng Sun Jian Wang Jinquan Liu Chunyan Cheng Weiguo
Publisher: Taylor & Francis Ltd
ISSN: 0039-7911
Source: Synthetic Communications, Vol.43, Iss.22, 2013-11, pp. : 2985-2997
Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.
Abstract
A catalytic system of triethanolamine/potassium iodide (KI) was proved to be efficient for the chemical fixation of CO2 with epoxide. It was found that triethanolamine with dual function could activate both CO2 and epoxides. Effects of parameters such as catalyst molar ratio and amount, reaction time, pressure, and temperature were studied systematically. As a result, 99% propylene oxide conversion as well as 99% propylene carbonate selectivity could be obtained under the optimal reaction condition. Furthermore, the catalyst was found to be applicable to a variety of terminal epoxides, providing the corresponding cyclic carbonates in good yields and selectivity. Moreover, the catalyst could be reused five times without loss of activity. This work presents an example of a cheap and efficient catalyst for the chemical fixation of CO2 to high-value chemicals, which could help to improve the catalytic efficiency and decrease cost of products for larger applications.[Supplementary materials are available for this article. Go to the publisher's online edition of
Related content




By Zhou Liang Cai Guoxing Zhang Letao Luo Yanping He Zhenhong Eli Wumanjiang
Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, Vol. 44, Iss. 10, 2014-11 ,pp. :




By Jagtap Sachin Bhanushali Mayur Panda Anil Bhanage Bhalchandra
Catalysis Letters, Vol. 112, Iss. 1-2, 2006-11 ,pp. :