Intermolecular Interaction between a Synthetic Pseudoceramide and a Sterol-Combined Fatty Acid

Author: Mizushima H.   Fukasawa J.I.   Suzuki T.  

Publisher: Academic Press

ISSN: 0021-9797

Source: Journal of Colloid and Interface Science, Vol.195, Iss.1, 1997-11, pp. : 156-163

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

To better understand the phase behavior of a pseudoceramide (SLE), a potential skin moisturizer and/or a drug carrier, we investigated the lipid-lipid interaction between SLE and a sterol-combined fatty acid (CEOS), which has a sterol ring and a carboxyl group in a molecule. X-ray analysis showed that a hexagonal packing (4.15 A spacing) and a liquid-like packing (4.5 A spacing) coexisted within the hydrocarbon chains of the SLE/CEOS (1/1 mole) lipid mixture. The structural characteristics were very similar to those of the SLE/stearic acid/cholesterol (1/1/1 mole) system, which was in a stable lamellar alpha-phase. However, in the SLE/stearic acid (1/1 mole) system, there was only a strong hexagonal reflection in the wide-angle X-ray profile. The melting enthalpy (23.9 kJ mol-1) and entropy (75.0 J mol-1 K-1) of the SLE/CEOS system were also smaller than those (DeltaHm = 43.9 kJ mol-1, DeltaSm = 131.6 J mol-1 K-1) of the SLE/stearic acid system. The X-ray data along with the DSC results suggested that the sterol ring of CEOS molecule contributed to the enhancement of molecular motion or the decrease in the molecular packing of lipids. A strong hydrogen bond between the carboxyl group of CEOS and the amide group of SLE molecule was also considered to be important for the formation of the stable alpha-phase, as suggested by FT-IR spectroscopy. Further, in the presence of water, the three artificial SC lipids, SLE/CEOS (1/1 mole), SLE/stearic acid/cholesterol (1/1/1 mole), and SLE/stearic acid (1/1 mole), were all capable of forming lamellar structures. Copyright 1997 Academic Press.