A New Model for the Three-dimensional Folding of Escherichia coli 16 S Ribosomal RNA. III. The Topography of the Functional Centre

Author: Mueller F.   Stark H.   van Heel M.   Rinke-Appel J.   Brimacombe R.  

Publisher: Academic Press

ISSN: 0022-2836

Source: Journal of Molecular Biology, Vol.271, Iss.4, 1997-08, pp. : 566-587

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

We describe the locations of sites within the 3D model for the 16 S rRNA (described in two accompanying papers) that are implicated in ribosomal function. The relevant experimental data originate from many laboratories and include sites of foot-printing, cross-linking or mutagenesis for various functional ligands. A number of the sites were themselves used as constraints in building the 16 S model. (1) The foot-print sites for A site tRNA are all clustered around the anticodon stem-loop of the tRNA; there is no "allosteric" site. (2) The foot-print sites for P site tRNA that are essential for P site binding are similarly clustered around the P site anticodon stem-loop. The foot-print sites in 16 S rRNA helices 23 and 24 are, however, remote from the P site tRNA. (3) Cross-link sites from specific nucleotides within the anticodon loops of A or P site-bound tRNA are mostly in agreement with the model, whereas those from nucleotides in the elbow region of the tRNA (which also exhibit extensive cross-linking to the 50 S subunit) are more widely spread. Again, cross-links to helix 23 are remote from the tRNAs. (4) The corresponding cross-links from E site tRNA are predominantly in helix 23, and these agree with the model. Electron microscopy data are presented, suggestive of substantial conformational changes in this region of the ribosome. (5) Foot-prints for IF-3 in helices 23 and 24 are at a position with close contact to the 50 S subunit. (6) Foot-prints from IF-1 form a cluster around the anticodon stem-loop of A site tRNA, as do also the sites on 16 S rRNA that have been implicated in termination. (7) Foot-print sites and mutations relating to streptomycin form a compact group on one side of the A site anticodon loop, with the corresponding sites for spectinomycin on the other side. (8) Site-specific cross-links from mRNA (which were instrumental in constructing the 16 S model) fit well both in the upstream and downstream regions of the mRNA, and indicate that the incoming mRNA passes through the well-defined "hole" at the head-body junction of the 30 S subunit.

Related content