Magnetic Navigation

Author: Phillips J.B.  

Publisher: Academic Press

ISSN: 0022-5193

Source: Journal of Theoretical Biology, Vol.180, Iss.4, 1996-06, pp. : 309-319

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

Recent evidence suggests that some amphibians, reptiles and birds may be capable of homing using information about geographic position ("map" information) derived from subtle geographic gradients in the earth's magnetic field. The "magnetic map" hypothesis faces numerous theoretical difficulties, however, due to the extremely high level of sensitivity that would be necessary to detect natural magnetic gradients, and to the presence of spatial irregularities and temporal variation in the geomagnetic field that might make map coordinates derived from magnetic gradients unreliable. To date, the majority of studies carried out to test the magnetic map hypothesis have involved field observations of the effects on homing orientation of naturally occurring spatial or temporal variation in the geomagnetic field. While providing an important first step, these studies are subject to the criticism that the observed changes in homing orientation could result from effects on a magnetic compass, or some other unidentified component of the navigational system, rather than from effects on a magnetic map. The recent development of experimental systems in which navigational ability can be studied under controlled or semi-controlled laboratory conditions has opened up the possibility of using new experimental approaches to more rigorously test the magnetic map hypothesis. After briefly reviewing the available evidence of the geomagnetic field's involvement in the map component of homing, a simple graphical model is presented which describes how the home direction derived from a bicoordinate map varies as a function of the value of one of the map coordinates when the value of the second map coordinate is held constant. In studies of homing orientation in which the value of a specific magnetic field parameter (e.g., total intensity, inclination, etc.) can be varied independently of other putative map parameters, the graphical model can be used to generate qualitative predictions about the changes in the direction of homing orientation that should be observed if the magnetic field parameter being manipulated serves as one coordinate of a bicoordinate map. The relationship between the direction of homing orientation and the value of a putative magnetic map parameter can also be used to generate quantitative predictions about characteristics of the local gradient of that magnetic field parameter in the vicinity of the home site (i.e., the alignment and "home value" of the local gradient) which can then be compared with actual measured values. Together, the qualitative and quantitative predictions of the graphical model permit rigorous tests of whether one or both coordinates of a bicoordinate navigational map are derived from the geomagnetic field.