Author: Clarke W.E. Berry M. Smith C. Kent A. Logan A.
Publisher: Academic Press
ISSN: 1044-7431
Source: Molecular and Cellular Neuroscience, Vol.17, Iss.1, 2001-01, pp. : 17-30
Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.
Abstract
Traumatic injury to the adult central nervous system initiates a cascade of cellular and trophic events, culminating in the formation of a reactive gliotic scar through which transected axons fail to regenerate. Levels of fibroblast growth factor-2 (FGF-2), a potent gliogenic and neurotrophic factor, together with its full-length receptor, FGF receptor 1 (FGFR1) are coordinately and significantly increased postinjury in both nuclear and cytoplasmic fractions of extracted cerebral cortex biopsies after a penetrant injury. FGFR1 is colocalized with FGF-2 in the nuclei of reactive astrocytes, and here FGF-2 is associated with nuclear euchromatin. This study unequivocally demonstrates coordinate up-regulation and trafficking of FGF-2 and full-length FGFR1 to the nucleus of reactive astrocytes in an
Related content
By Fuhrmann Veronique Kinkl Norbert Leveillard Thierry Sahel Jos Hicks David
Journal of Molecular Neuroscience, Vol. 13, Iss. 1-2, 1999-08 ,pp. :
By Lachapelle F. Avellana-Adalid V. Nait-Oumesmar B. Baron-van Evercooren A.
Molecular and Cellular Neuroscience, Vol. 20, Iss. 3, 2002-07 ,pp. :
By Brumwell C.L. Hossain W.A. Morest D.K. Bernd P.
Experimental Neurology, Vol. 162, Iss. 1, 2000-03 ,pp. :