Discovery of γ-ray emission from the broad-line radio galaxy Pictor A

Author: Brown Anthony M.   Adams Jenni  

Publisher: Oxford University Press

ISSN: 0035-8711

Source: Monthly Notices of the Royal Astronomical Society, Vol.421, Iss.3, 2012-04, pp. : 2303-2309

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

ABSTRACTWe report the discovery of high-energy γ-ray emission from the broad-line radio galaxy (BLRG) Pictor A with a significance of ∼ 5.8σ [test statistic (TS) = 33.4], based on three years of observations with the Fermi Large Area Telescope (LAT) detector. The three-year-averaged E > 0.2 GeV γ-ray spectrum is adequately described by a power law, with a photon index, Γ, of 2.93 ± 0.03 and a resultant integrated flux of Fγ= (5.8 ± 0.7) × 10−9 photons cm−2 s−1.A temporal investigation of the observed γ-ray flux, which binned the flux into year-long intervals, reveals that the flux in the third year was 50 per cent higher than the three-year-averaged flux. This observation, coupled with the fact that this source was not detected in the first two years of Fermi-LAT observations, suggests variability on time-scales of a year or less.Synchrotron self-Compton modelling of the spectral energy distribution of a prominent hotspot in Pictor A’s western radio lobe is performed. It is found that the models in which the γ-ray emission originates within the lobes predict an X-ray flux larger than that observed. Given that the X-ray emission in the radio lobe hotspots has been resolved with the current suite of X-ray detectors, we suggest that the γ-ray emission from Pictor A originates from within its jet, which is in agreement with other γ-ray-loud BLRGs. This suggestion is consistent with the evidence that the γ-ray flux is variable on time-scales of a year or less.

Related content