The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges

Author: Chin S L   Hosseini S A   Liu W   Luo Q   Théberge F   Aközbek N   Becker A   Kandidov V P   Kosareva O G   Schroeder H  

Publisher: NRC Research Press

ISSN: 1208-6045

Source: Canadian Journal of Physics, Vol.83, Iss.9, 2005-09, pp. : 863-905

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

When a powerful femtosecond laser pulse propagates in an optical medium, self-focusing occurs. Normally, it is the most powerful part (slice) of the pulse that self-focuses first during its propagation. Self-focusing is balanced by the creation of plasma in the self-focal volume, which defocuses the pulse. This balance leads to a limitation of the peak intensity (intensity clamping). The series of self-foci from different slices of the front part of the pulse give rise to the perception of a so-called filament. The back part of the pulse undergoes self-phase modulation and self-steepening resulting in a strong spectral broadening. The final pulse is a white-light laser pulse (supercontinuum). The physics of such (long distance) filamentation and the self-transformation process are reviewed both in air and in condensed matters. The self-transformation leads to a shorter pulse and is currently being studied for efficient pulse compression to the single and (or) few-cycle level. The efficient generation of a third harmonic in the filament is due to a new phenomenon called self-phase locking. The potential applications in atmospheric sensing and lightning control will be briefly discussed. The capability of melting glass leading to index change will be underlined. The paper will end with an outlook into the future of the field. PACS Nos.: 42.65, 42.65Jx, 42.25, 42.79QxLorsqu'un puissant pulse laser femtoseconde se propage dans un milieu optique, nous observons de l'auto-focalisation. Normalement, c'est la tranche du pulse la plus puissante qui s'auto-focalise la première pendant la propagation. L'auto-focalisation est balancée par la création de plasma dans le volume d'auto-focalisation, ce qui défocalise le pulse. Un équilibre s'installe qui mène à une limitation de l'intensité du pic (auto-verrouillage). La séquence d'auto-focalisation par les différentes tranches du pulse donne naissance à la perception d'un phénomène baptisé filamentation. La partie arrière du pulse subit une auto-modulation de phase et une auto-élévation, résultant en un important élargissement spectral. Nous passons en revue ici la physique de cette filamentation (à longue distance et le mécanisme d'auto-transformation, dans l'air et dans une matière condensée. L'auto-transformation mène à un pulse plus court et est présentement sous étude comme moyen efficace de compression pour un pulse d'un ou de quelques cycles. La génération efficace de troisième harmonique dans le filament est due à un nouveau phénomène appelé auto-verropuillage de phase. Nous discutons brièvement certaines applications possibles, comme le contrôle de la foudre et la sonde de l'atmosphère. Nous soulignons la possibilité de la fonte du verre (milieu optique), menant à des changement d'indice. La papier conclut avec une prospective d'avenir du domaine. [Traduit par la Rédaction]

Related content