The Covariant Stark Effect

Author: Land M.C.   Horwitz L.P.  

Publisher: Springer Publishing Company

ISSN: 0015-9018

Source: Foundations of Physics, Vol.31, Iss.6, 2001-06, pp. : 967-991

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

This paper examines the Stark effect, as a first order perturbation of manifestly covariant hydrogen-like bound states. These bound states are solutions to a relativistic Schrödinger equation with invariant evolution parameter, and represent mass eigenstates whose eigenvalues correspond to the well-known energy spectrum of the nonrelativistic theory. In analogy to the nonrelativistic case, the off-diagonal perturbation leads to a lifting of the degeneracy in the mass spectrum. In the covariant case, not only do the spectral lines split, but they acquire an imaginary part which is linear in the applied electric field, thus revealing induced bound state decay in first order perturbation theory. This imaginary part results from the coupling of the external field to the non-compact boost generator. In order to recover the conventional first order Stark splitting, we must include a scalar potential term. This term may be understood as a fifth gauge potential, which compensates for dependence of gauge transformations on the invariant evolution parameter.