Deformation, stress relaxation, and crystallization of lithium silicate glass fibers below the glass transition temperature

Author: Reis S. T.   Kim Cheol-Woon   Brow R. K.   Ray C. S.  

Publisher: Springer Publishing Company

ISSN: 0022-2461

Source: Journal of Materials Science, Vol.39, Iss.21, 2004-11, pp. : 6539-6549

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

The deformation and crystallization of Li2O·2SiO2 and Li2O·1.6SiO2 glass fibers subjected to a bending stress were measured as a function of time over the temperature range ∼50 to ∼150°C below the glass transition temperature (Tg). The glass fibers can be permanently deformed at temperatures about 100°C below Tg, and they crystallize significantly at temperatures close to, but below Tg, about 150°C lower than the onset temperature for crystallization for these glasses in the no-stress condition. The crystallization was found to occur only on the surface of the glass fibers with no detectable difference in the extent of crystallization in tensile and compressive stress regions. The relaxation mechanism for fiber deformation can be best described by a stretched exponential (Kohlrausch-Williams- Watt (KWW) approximation), rather than a single exponential model.The activation energy for stress relaxation, Es, for the glass fibers ranges between 175 and 195 kJ/mol, which is considerably smaller than the activation energy for viscous flow, Eη (∼400 kJ/mol) near Tg for these glasses at normal, stress-free condition. It is suspected that a viscosity relaxation mechanism could be responsible for permanent deformation and crystallization of the glass fibers below Tg.