Long-term effects of elevated atmospheric CO2 on below-ground biomass and transformations to soil organic matter in grassland

Author: Jastrow J.D.   Miller R.M.   Owensby C.E.  

Publisher: Springer Publishing Company

ISSN: 0032-079X

Source: Plant and Soil, Vol.224, Iss.1, 2000-09, pp. : 85-97

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

We determined the effects of elevated [CO2] on the quantity and quality of below-ground biomass and several soil organic matter pools at the conclusion of an eight-year CO2 enrichment experiment on native tallgrass prairie. Plots in open-top chambers were exposed continuously to ambient and twice-ambient [CO2] from early April through late October of each year. Soil was sampled to a depth of 30 cm beneath and next to the crowns of C4 grasses in these plots and in unchambered plots. Elevated [CO2] increased the standing crops of rhizomes (87%), coarse roots (46%), and fibrous roots (40%) but had no effect on root litter (mostly fine root fragments and sloughed cortex material >500 μm). Soil C and N stocks also increased under elevated [CO2], with accumulations in the silt/clay fraction over twice that of particulate organic matter (POM; >53 μm). The mostly root-like, light POM (density ≤1.8 Mg m-3) appeared to turn over more rapidly, while the more amorphous and rendered heavy POM (density >1.8 Mg m-3) accumulated under elevated [CO2]. Overall, rhizome and root C:N ratios were not greatly affected by CO2 enrichment. However, elevated [CO2] increased the C:N ratios of root litter and POM in the surface 5 cm and induced a small but significant increase in the C:N ratio of the silt/clay fraction to a depth of 15 cm. Our data suggest that 8 years of CO2 enrichment may have affected elements of the N cycle (including mineralization, immobilization, and asymbiotic fixation) but that any changes in N dynamics were insufficient to prevent significant plant growth responses.