Biological evaluation of a series of 2-acetamido-2-deoxy-D-glucose analogs towards cellular glycosaminoglycan and protein synthesis in vitro

Author: Berkin Ali   Szarek Walter   Kisilevsky Robert  

Publisher: Springer Publishing Company

ISSN: 0282-0080

Source: Glycoconjugate Journal, Vol.22, Iss.7-9, 2005-11, pp. : 443-451

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

Using primary hepatocytes in culture, various 2-acetamido-2-deoxy-D-glucose (GlcNAc) analogs were examined for their effects on the incorporation of D-[3H]glucosamine, [35S]sulfate, and L-[14C]leucine into cellular glycoconjugates. A series of acetylated GlcNAc analogs, namely methyl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-α-(3) and β-D-glucopyranoside (4) and 2-acetamido-1,3,4,6-tetra-O-acetyl-2-deoxy-D-glucopyranose (5), exhibited a concentration-dependent reduction of D-[3H]glucosamine, but not of [35S]sulfate incorporation into isolated glycosaminoglycans (GAGs), without affecting L-[14C]leucine incorporation into total protein synthesis. These results suggest that analogs 3–5 exhibit an inhibitory effect on D-[3H]glucosamine incorporation into isolated GAGs by diluting the specific activity of cellular D-[3H]glucosamine and by competing for the same metabolic pathways. In the case of the corresponding series of 4-deoxy-GlcNAc analogs, namely methyl 2-acetamido-3,6-di-O-acetyl-2,4-dideoxy-α-(6) and β-D-xylo-hexopyranoside (7) and 2-acetamido-1,3,6-tri-O-acetyl-2,4-dideoxy-D-xylo-hexopyranose (8), compound 8 at 1.0 mM exhibited the greatest reduction of D-[3H]glucosamine and [35S]sulfate incorporation into isolated GAGs, namely to ∼7% of controls, and a moderate inhibition of total protein synthesis, namely to 60% of controls. Exogenous uridine was able to restore the inhibition of total protein synthesis by compound 8 at 1.0 mM. Isolated GAGs from cultures treated with compound 8 were shown to be smaller in size (∼40 kDa) than for control cultures (∼77 kDa). These results suggest that the inhibitory effects of compound 8 on cellular GAG synthesis may be mediated by the incorporation of a 4-deoxy moiety into GAGs resulting in premature chain termination and/or by its serving as an enzymatic inhibitor of the normal sugar metabolites. The inhibition of total protein synthesis from cultures treated with compound 8 suggests a uridine trapping mechanism which would result in the depletion of UTP pools and cause the inhibition of total protein synthesis. A 1-deoxy-GlcNAc analog, namely 2-acetamido-3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-D-glucitol (9), also exhibited a reduction in both D -[3H]glucosamine and [35S]sulfate incorporation into isolated GAGs by 19 and 57%, of the control cells, respectively, at 1.0 mM without affecting total protein synthesis. The inability of compound 9 to form a UDP-sugar and, hence, be incorporated into GAGs presents another metabolic route for the inhibition of cellular GAG synthesis. Potential metabolic routes for each analog's effects are presented.

Related content