Correction of Permeability with Pore Radius of Tight Junctions in Caco-2 Monolayers Improves the Prediction of the Dose Fraction of Hydrophilic Drugs Absorbed by Humans

Author: Saitoh Ryoichi   Sugano Kiyohiko   Takata Noriyuki   Tachibana Tatsuhiko   Higashida Atsuko   Nabuchi Yoshiaki   Aso Yoshinori  

Publisher: Springer Publishing Company

ISSN: 0724-8741

Source: Pharmaceutical Research, Vol.21, Iss.5, 2004-05, pp. : 749-755

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

Purpose. To improve predictions of fraction dose absorbed (Fa) for hydrophilic drugs, a correction of paracellular permeability using the pore radius of tight junctions (TJs) in Caco-2 monolayers was performed.Methods. The apparent permeability coefficient (Papp) of drugs was measured using the Caco-2 assay and the parallel artificial membrane permeation assay (PAMPA), and values were corrected with the pore radius of TJs.Results. An equation for calculating the pore radius of TJs from the Papp of lucifer yellow was obtained. The optimal pore radius of TJs in Caco-2 monolayers for predicting human Fa was calculated to be 7 Å. The correlation between the actual and predicted Fa was improved by using the Papp corrected with the pore radius of TJs. Permeability in the PAMPA, which was corrected using the pore radius and membrane potential, was well correlated with that in the Caco-2 assay. Most of the hydrophilic drugs tested in this study were absorbed mainly through the paracellular pathway.Conclusions. The results suggest the necessity of optimizing paracellular permeation for the prediction of Fa, and also the importance of the paracellular pathway to the absorption of hydrophilic drugs. This method might contribute to the setting of appropriate dosages and the development of hydrophilic drugs.

Related content