

Author: Lenglet Christophe Rousson Mikaël Deriche Rachid Faugeras Olivier
Publisher: Springer Publishing Company
ISSN: 0924-9907
Source: Journal of Mathematical Imaging and Vision, Vol.25, Iss.3, 2006-10, pp. : 423-444
Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.
Abstract
This paper is dedicated to the statistical analysis of the space of multivariate normal distributions with an application to the processing of Diffusion Tensor Images (DTI). It relies on the differential geometrical properties of the underlying parameters space, endowed with a Riemannian metric, as well as on recent works that led to the generalization of the normal law on Riemannian manifolds. We review the geometrical properties of the space of multivariate normal distributions with zero mean vector and focus on an original characterization of the mean, covariance matrix and generalized normal law on that manifold. We extensively address the derivation of accurate and efficient numerical schemes to estimate these statistical parameters. A major application of the present work is related to the analysis and processing of DTI datasets and we show promising results on synthetic and real examples.
Related content







