Uniformly Convergent Multigrid Methods for Convection–Diffusion Problems without Any Constraint on Coarse Grids

Author: Kim Hwanho   Xu Jinchao   Zikatanov Ludmil  

Publisher: Springer Publishing Company

ISSN: 1019-7168

Source: Advances in Computational Mathematics, Vol.20, Iss.4, 2004-05, pp. : 385-399

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

We construct a class of multigrid methods for convection–diffusion problems. The proposed algorithms use first order stable monotone schemes to precondition the second order standard Galerkin finite element discretization. To speed up the solution process of the lower order schemes, cross-wind-block reordering of the unknowns is applied. A V-cycle iteration, based on these algorithms, is then used as a preconditioner in GMRES. The numerical examples show that this method is convergent without imposing any constraint on the coarsest grid and the convergence of the preconditioned method is uniform.