Performance of high-velocity oxyfuel-sprayed coatings on an fe-based superalloy in Na2SO4-60%V2O5 environment at 900 °C Part I: Characterization of the coatings

Author: Sidhu T.   Prakash S.   Agrawal R.  

Publisher: Springer Publishing Company

ISSN: 1059-9495

Source: Journal of Materials Engineering and Performance, Vol.15, Iss.1, 2006-02, pp. : 122-129

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

This article demonstrates the successful formulation of NiCrBSi, Cr3C2-NiCr, Ni-20Cr, and Stellite-6 coatings on an Fe-based superalloy by a high-velocity oxyfuel (HVOF) process for hot corrosion applications. The microstructure, porosity, coating thickness, phase formation, and microhardness properties of the coatings have been characterized using the combined techniques of optical microscopy, x-ray diffraction, scanning electron microscopy/energy-dispersive x-ray analysis. A microhardness tester was used to determine the hardness of the coatings. The coatings in general exhibit characteristic splat-like, layered morphologies due to the deposition and resolidification of successive molten or semimolten powder particles. The NiCrBSi, Cr3C2-NiCr, and Ni-20Cr coatings have shown a nickel-base face-centered cubic (fcc) structure as a principal phase, whereas Stellite-6 coating has an fcc Co-rich metallic matrix. Oxides/spinel oxides are formed in small fraction as intersplat lamellae or globules oriented parallel to the substrate surface. Coatings possess some unmelted/partially melted particles, inclusions, and porosity less than 2%. The microhardness of the coatings is found to be higher than the superalloys. The Cr3C2-NiCr coating has indicated a maximum microhardness of 990 Hv, while a Ni-20Cr coating has shown a minimum value of about 600 Hv. This article is focused on the characterization of HVOF coatings. The hot corrosion behavior of these coatings in a molten salt (Na2SO4-60%V2O5) environment at 900 °C under cyclic conditions is being presented as part II included in this issue.

Related content