Cytochrome P450s in flavonoid metabolism

Author: Ayabe Shin-ichi   Akashi Tomoyoshi  

Publisher: Springer Publishing Company

ISSN: 1568-7767

Source: Phytochemistry Reviews, Vol.5, Iss.2-3, 2006-06, pp. : 271-282

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

In this review, cytochrome P450s characterized at the molecular level catalyzing aromatic hydroxylations, aliphatic hydroxylations and skeleton formation in the flavonoid metabolism are surveyed. They are involved in the biosynthesis of anthocyanin pigments and condensed tannin (CYP75, flavonoid 3′,5′-hydroxylase and 3′-hydroxylase), flavones [CYP93B, (2S)-flavanone 2-hydroxylase and flavone synthase II], and leguminous isoflavonoid phytoalexins [CYP71D9, flavonoid 6-hydroxylase; CYP81E, isoflavone 2′-hydroxylase and 3′-hydroxylase; CYP93A, 3,9-dihydroxypterocarpan 6a-hydroxylase; CYP93C, 2-hydroxyisoflavanone synthase (IFS)]. Other P450s of the flavonoid metabolism include methylenedioxy bridge forming enzyme, cyclases producing glyceollins, flavonol 6-hydroxylase and 8-dimethylallylnaringenin 2′-hydroxylase. Mechanistic studies on the unusual aryl migration by CYP93C, regulation of IFS expression in plant organs and its biotechnological applications are introduced, and flavonoid metabolisms by non-plant P450s are also briefly discussed.