Thermal acclimation modulates the impacts of temperature and enrichment on trophic interaction strengths and population dynamics

Publisher: John Wiley & Sons Inc

E-ISSN: 1365-2486|21|9|3290-3298

ISSN: 1354-1013

Source: GLOBAL CHANGE BIOLOGY, Vol.21, Iss.9, 2015-09, pp. : 3290-3298

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

AbstractGlobal change affects individual phenotypes and biotic interactions, which can have cascading effects up to the ecosystem level. However, the role of environmentally induced phenotypic plasticity in species interactions is poorly understood, leaving a substantial gap in our knowledge of the impacts of global change on ecosystems. Using a cladoceran–dragonfly system, we experimentally investigated the effects of thermal acclimation, acute temperature change and enrichment on predator functional response and metabolic rate. Using our experimental data, we next parameterized a population dynamics model to determine the consequences of these effects on trophic interaction strength and food‐chain stability. We found that (1) predation and metabolic rates of the dragonfly larvae increase with acute warming, (2) warm‐acclimated larvae have a higher maximum predation rate than cold‐acclimated ones, and (3) long‐term interaction strength increases with enrichment but decreases with both acclimation and acute temperatures. Overall, our experimental results show that thermal acclimation can buffer negative impacts of environmental change on predators and increase food‐web stability and persistence. We conclude that the effect of acclimation and, more generally, phenotypic plasticity on trophic interactions should not be overlooked if we aim to understand the effects of climate change and enrichment on species interaction strength and food‐web stability.