Molecular insights into the mechanisms of liver‐associated diseases in early‐lactating dairy cows: hypothetical role of endoplasmic reticulum stress

Publisher: John Wiley & Sons Inc

E-ISSN: 1439-0396|99|4|626-645

ISSN: 0931-2439

Source: JOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Vol.99, Iss.4, 2015-08, pp. : 626-645

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

SummaryThe transition period represents the most critical period in the productive life of high‐yielding dairy cows due to both metabolic and inflammatory stimuli, which challenge the liver and predispose dairy cows to develop liver‐associated diseases such as fatty liver and ketosis. Despite the fact that all high‐yielding dairy cows are affected by marked metabolic stress due to a severe negative energy balance (NEB) during early lactation, not all cows develop liver‐associated diseases. Although the reason for this is largely unknown, this indicates that the capacity of the liver to cope with metabolic and inflammatory challenges varies between individual high‐yielding dairy cows. Convincing evidence exists that endoplasmic reticulum (ER) stress plays a key role in the development of fatty liver, and it has been recently shown that ER stress occurs in the liver of high‐yielding dairy cows. This indicates that ER stress may be involved in the development of liver‐associated diseases in dairy cows. The present review shows that the liver of dairy cows during early lactation is exposed to several metabolic and inflammatory challenges, such as non‐esterified fatty acids, tumour necrosis factor α, interleukin‐1β, reactive oxygen species and lipopolysaccharides, which are known inducers of ER stress. Thus, ER stress may represent a molecular basis for fatty liver development and account for the frequent occurrence of fatty liver and ketosis in high‐yielding dairy cows. Interindividual differences between dairy cows in the activation of hepatic stress response pathways, such as nuclear factor E2‐related factor 2, which is activated during ER stress and reduces the sensitivity of tissues to oxidative and inflammatory damage, might provide an explanation at the molecular level for differences in the capacity to cope with pathological inflammatory challenges during early lactation and the susceptibility to develop liver‐associated diseases between early‐lactating dairy cows with similar NEB and milk yield.