

Publisher: John Wiley & Sons Inc
E-ISSN: 1460-2695|8756-758X|11|1347-1358
ISSN: 8756-758x
Source: FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Vol.8756-758X, Iss.11, 2015-11, pp. : 1347-1358
Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.
Abstract
Related content




Artificial Neural Network Model for Predict of Silicon Content in Hot Metal Blast Furnace
Materials Science Forum, Vol. 2016, Iss. 869, 2016-10 ,pp. :



