Stomata‐Inspired Membrane Produced Through Photopolymerization Patterning

Publisher: John Wiley & Sons Inc

E-ISSN: 1616-3028|25|28|4496-4505

ISSN: 1616-301x

Source: ADVANCED FUNCTIONAL MATERIALS, Vol.25, Iss.28, 2015-07, pp. : 4496-4505

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

The programmed movements of responsive functional hydrogels have received much attention because of their abundant functions and wide range of engineering applications. In this study, an innovative stomata‐inspired membrane (SIM) is fabricated by using a temperature‐responsive hydrogel through a simple, cost‐effective, and high‐throughput patterned photopolymerization. Polymerization‐induced diffusion on the macroscale surface results in formation of a double‐parted polymer membrane with fine pores after single illumination. After heating the SIM, the less deformable thick frame supports the whole structure and the highly deformable thin base regulates pore shape. Among various SIM types, the slit pores of monocot SIM, which are lined up in parallel, exhibit the largest radius deformation. The morphological configuration of the SIM can be easily controlled by changing the photomask for a given application. As the developed SIM features the sensing‐to‐activation functions of stimuli‐responsive hydrogels and can be easily fabricated, this membrane can be potentially used for numerous practical applications, such as filter membranes with adjustable pores, membrane‐based sensors, membrane‐based actuators, and multifunctional membranes.