

Publisher: John Wiley & Sons Inc
E-ISSN: 1600-6143|15|10|2576-2587
ISSN: 1600-6135
Source: AMERICAN JOURNAL OF TRANSPLANTATION, Vol.15, Iss.10, 2015-10, pp. : 2576-2587
Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.
Abstract
Latent viral infections are a major concern among immunosuppressed transplant patients. During clinical trials with belatacept, a CTLA4‐Ig fusion protein, patients showed an increased risk of Epstein–Barr virus‐associated posttransplant lymphoproliferative disorder, thought to be due to a deficient primary CD8+ T cell response to the virus. Using a murine model of latent viral infection, we observed that rapamycin treatment alone led to a significant increase in virus‐specific CD8+ T cells, as well as increased functionality of these cells, including the ability to make multiple cytokines, while CTLA4‐Ig treatment alone significantly dampened the response and inhibited the generation of polyfunctional antigen‐specific CD8+ T cells. However, the addition of rapamycin to the CTLA4‐Ig regimen was able to quantitatively and qualitatively restore the antigen‐specific CD8+ T cell response to the virus. This improvement was physiologically relevant, in that CTLA4‐Ig treated animals exhibited a greater viral burden following infection that was reduced to levels observed in untreated immunocompetent animals by the addition of rapamycin. These results reveal that modulation of T cell differentiation though inhibition of mTOR signaling can restore virus‐specific immune competence even in the absence of CD28 costimulation, and have implications for improving protective immunity in transplant recipients.
Related content







