A Novel Role for the Calcium Sensing Receptor in Rat Diabetic Encephalopathy

Publisher: Karger

E-ISSN: 1421-9778|35|1|38-50

ISSN: 1015-8987

Source: Cellular Physiology and Biochemistry, Vol.35, Iss.1, 2015-01, pp. : 38-50

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

Background: Diabetic encephalopathy is a common complication of diabetes, and it may be involved in altering intracellular calcium concentrations ([Ca2+]i) at its onset. The calcium sensing receptor (CaSR) is a G-protein coupled receptor, however, the functional involvement of CaSR in diabetic encephalopathy remains unclear. Methods: In this study, diabetic rats were modeled by STZ (50 mg/kg). At the end of 4, 8 and 12 weeks, the CaSR expression in hippocampus was analyzed by Western blot. In neonatal rat hippocampal neurons, the [Ca2+]i was detected by laser scanning confocal microscopy, the production of reactive oxygen species (ROS) in mitochondria, the level of NO and the mitochondrial transmembrane potential were measured by MitoSOX, DAF-FM and JC-1, respectively. Results: Our results showed in hippocampal neurons treated with high glucose, CaSR regulated [Ca2+]i through the PLC-IP3 pathway. CaSR expression was decreased and was involved in the changes in [Ca2+]i. Mitochondrial membrane potential, NO release and expression of p-eNOS decreased, while the production of ROS in mitochondria increased. Conclusion: Down-regulation of CaSR expression was accompanied by neuronal injury, calcium disturbance, increased ROS production and decreased release of NO. Up-regulation of CaSR expression attenuated these changes through a positive compensatory protective mechanism to inhibit and delay diabetic encephalopathy in rats.