Publisher: Karger
E-ISSN: 1421-9778|25|4-5|477-490
ISSN: 1015-8987
Source: Cellular Physiology and Biochemistry, Vol.25, Iss.4-5, 2010-03, pp. : 477-490
Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.
Abstract
Aims: The role of antisense oligodeoxynucleotide against tissue factor (aODN/TF) in cultured human umbilical vein endothelial cells (HUVECs) subjected to anoxia-reoxygenation (A/R) was investigated. Methods: HUVECs were divided randomly into control group, A/R group, aODN/TF+A/R group, sense oligodeoxynucleotide (sODN/TF) + A/R group and mismatched oligodeoxynucleotide (mODN/TF) + A/R group, in the latter 3 groups, HUVECs were transfected with aODN/TF, sODN/TF and mODN/TF respectively. HUVECs in all A/R groups underwent 3 hrs of anoxia and followed by 2 hrs of reoxygenation. In order to investigate the potential mechanisms of how increased TF may contribute to A/R injury in HUVECs, another set of HUVECs were incubated with human recombinant active site blocked factor VII (FVIIai) during A/R. Results: After A/R, TF expression at both mRNA and protein level was increased, furthermore, cell viability and the concentrations of SOD, GSH-PX and NO were declined, while LDH, MDA and ET-1 were overproduced (P<0.05 to 0.001 versus control group). In HUVECs of aODN/TF+A/R group, however, TF expression was inhibited, while the declined cell viability and the concentrations of SOD, GSH-PX, NO as well as the enhanced LDH, MDA and ET-1 levels occurred during A/R were ameliorated and reversed effectively (P<0.05 to 0.01 versus those in other A/R groups). The results also showed that ROS was increased and PAR-1, PAR-2, p38 MAP kinase and p42/44 MAP kinase were all activated after A/R (P<0.001 versus HUVECs under normoxia), while FVIIai inhibited the increment of ROS, PAR-1, PAR-2, p38 MAP kinase and p42/44 MAP kinase, and improved the changes of TF:C, MDA, SOD, GSH-PX, cell viability and LDH occurred during A/R (P<0.05 to 0.001 versus HUVECs without FVIIai treatment). Conclusion: Tissue factor plays an important role in the development of HUVECs injury induced by anoxia-reoxygenation, inhibition of TF with antisense oligodeoxynucleotide is an effective approach to ameliorate the damage.
Related content
By Yao Weifeng Li Hui Liu Qinan Gao Ye Dai Jin Bao Beihua Zhang Li Ding Anwei
International Journal of Molecular Sciences, Vol. 17, Iss. 9, 2016-09 ,pp. :
Cellular Physiology and Biochemistry, Vol. 42, Iss. 2, 2017-06 ,pp. :