Protective Effect of L-Arginine Intake on the Impaired Renal Vascular Responses in the Gentamicin-Treated Rats

Publisher: Karger

ISSN: 1660-2137

Source: Nephron Physiology, Vol.100, Iss.2, 2005-05, pp. : p13-p20

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

The purpose of this study was to investigate the effect of gentamicin (100 mg/kg/day, i.p.) treatment on endothelium-dependent and -independent vasodilation in isolated perfused rat kidney, and the effect of amino acid L-arginine (in the drinking water, 2.25 g/l) on renal dysfunction induced by gentamicin. When gentamicin-treated groups were compared with the control group, it was observed that BUN and creatinine levels increased significantly. Also, the relaxant responses induced by acetylcholine, sodium nitroprusside and pinacidil decreased. Histopathological examination indicated acute tubular necrosis in this group. In animals treated with gentamicin together with L-arginine, there was a significant amelioration in the BUN and creatinine levels. The vasodilator responses were similar to those of the control group. Histopathological examination indicated only hydropic degeneration in tubular epithelium of kidney. Co-administration of L-NG-nitroarginine methyl ester (L-NAME) (112.5 mg/l), an inhibitor of nitric oxide synthase, and L-arginine to rats treated with gentamicin did not change the protective effect of L-arginine. In rats receiving L-NAME alone, the level of BUN and creatinine and vasodilation to acetylcholine were not significantly different when compared to those of the control group, while relaxant responses to sodium nitroprusside and pinacidil were increased. These results suggest that gentamicin leads to an impairment in vascular smooth muscle relaxation in addition to acute tubular necrosis in the rat kidney. Supplementation of L-arginine has an important protective effect on gentamicin-induced nephropathy.