Phase Equilibria in the ZrO2–MgO–MnOx System

Publisher: John Wiley & Sons Inc

E-ISSN: 1551-2916|99|9|3136-3145

ISSN: 0002-7820

Source: JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Vol.99, Iss.9, 2016-09, pp. : 3136-3145

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

Phase equilibria were experimentally investigated in the MgO–MnOx and the ZrO2–MgO–MnOx systems for different oxygen partial pressures by powder X‐ray diffractometry, scanning electron microscopy, and differential thermal analysis. The formation of two compositionally and structurally different β‐spinel solid solutions was observed in the MgO–MnOx system in air in the temperature interval 1473–1713 K. Isothermal sections of the ZrO2–MgO–MnOx phase diagram were constructed for air conditions (PO2 = 0.21 bar) at 1913, 1813, 1713, 1613, and 1523 K. In addition, isothermal sections at 1913 and 1523 K were constructed for PO2 = 10−4 bar. The β‐spinel and halite phases of the MgO–MnOx system were found to dissolve up to 2 and 5 mol% ZrO2. A continuous c‐ZrO2 solid solution forms between the boundary ZrO2–MnOx and ZrO2–MgO systems. It stabilizes in the ZrO2–MgO–MnOx system down to at least 1613 K in air and down to 1506 K at PO2 = 10−4 bar.