

Publisher: Trans Tech Publications
E-ISSN: 1662-9752|2017|888|47-51
ISSN: 0255-5476
Source: Materials Science Forum, Vol.2017, Iss.888, 2017-04, pp. : 47-51
Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.
Abstract
The phase instability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) is widely reported in atmospheres containing carbon dioxide, which affects the long term electrochemical performance. The aim of this study is to investigate the phase stability of BSCF under the influence of milling and calcination temperature. Commercial BSCF powder was milled at 200 and 500 rpm and subsequently calcined at 750, 800 and 900 °C. The BSCF samples were characterized by using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). Secondary phases that were triggered after milling, however reduced with the increase of calcination temperature up to 800 °C. It was also found that the reduction of crystallite size and particle size at increased calcination temperature might be affected by the removal of these secondary carbonate phases. Moreover, the removal of carbonate was clearly evidenced in FTIR spectra by the reduction of carbonate signal intensities. In brief, a minimum calcination temperature of 900 °C was suggested for successful carbonate removal and recovery of single BSCF phase.
Related content


Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) Perovskite Nanorods by Template Synthesis
Materials Science Forum, Vol. 2016, Iss. 846, 2016-04 ,pp. :


Ba0.5Sr0.5Co0.8Fe0.2-SDC Carbonate Composite Cathode for Low-Temperature SOFCs
Materials Science Forum, Vol. 2016, Iss. 840, 2016-02 ,pp. :


The Influence of Mn Doping on the Dielectric Properties of Ba0.5Sr0.5TiO3 Ceramics
Materials Science Forum, Vol. 2016, Iss. 859, 2016-06 ,pp. :

