

Publisher: Trans Tech Publications
E-ISSN: 1662-9795|2018|763|502-509
ISSN: 1013-9826
Source: Key Engineering Materials, Vol.2018, Iss.763, 2018-03, pp. : 502-509
Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.
Abstract
Using fluid viscous dampers (FVDs) has been demonstrated to be an effective method to improve seismic performance of new and existing buildings. In engineering applications, designs of these dampers mainly rely on trial and error, which could be repetitive and labor intensive. To improve this tedious manual process, it is beneficial to explore more formal and automated approaches that rely on recent advances in software applications for nonlinear dynamic analysis, performance-based evaluation, and workflow management and the computational power of high-performance, parallel processing computers. The optimization design procedure follows the framework of Performance Based Earthquake Engineering (PBEE) and uses an automatic tool that incorporates an optimization engine and structural analysis software: Open System for Earthquake Engineering Simulation (OpenSEES). An existing 35-story steel moment frame is selected as a case-study building for verification of this procedure. The goal of the retrofit design of FVDs is to improve the building’s seismic behavior that focuses on avoiding collapse under a basic-safety, level-2 earthquake (BSE-2E). The objective of the optimization procedure is to reduce the building’s total loss under a BSE-2E event and optimal damper patterns will be proposed. The efficiency of the optimization procedure will be demonstrated and compared with a manual refinement procedure.
Related content






Computer Aided Concept Building
Solid State Phenomena, Vol. 2017, Iss. 261, 2017-09 ,pp. :




Seismic Retrofitting of Eccentrically Braced Frames by Rocking Walls and Viscous Dampers
Key Engineering Materials, Vol. 2018, Iss. 763, 2018-03 ,pp. :