

Author: Zanin Massimiliano Gómez-Andrés David Pulido-Valdeolivas Irene Martín-Gonzalo Juan Andrés López-López Javier Pascual-Pascual Samuel Ignacio Rausell Estrella
Publisher: MDPI
E-ISSN: 1099-4300|20|1|77-77
ISSN: 1099-4300
Source: Entropy, Vol.20, Iss.1, 2018-01, pp. : 77-77
Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.
Abstract
Cerebral palsy is a physical impairment stemming from a brain lesion at perinatal time, most of the time resulting in gait abnormalities: the first cause of severe disability in childhood. Gait study, and instrumental gait analysis in particular, has been receiving increasing attention in the last few years, for being the complex result of the interactions between different brain motor areas and thus a proxy in the understanding of the underlying neural dynamics. Yet, and in spite of its importance, little is still known about how the brain adapts to cerebral palsy and to its impaired gait and, consequently, about the best strategies for mitigating the disability. In this contribution, we present the hitherto first analysis of joint kinematics data using permutation entropy, comparing cerebral palsy children with a set of matched control subjects. We find a significant increase in the permutation entropy for the former group, thus indicating a more complex and erratic neural control of joints and a non-trivial relationship between the permutation entropy and the gait speed. We further show how this information theory measure can be used to train a data mining model able to forecast the child’s condition. We finally discuss the relevance of these results in clinical applications and specifically in the design of personalized medicine interventions.
Related content


Permutation Entropy for Random Binary Sequences
By Liu Lingfeng Miao Suoxia Cheng Mengfan Gao Xiaojing
Entropy, Vol. 17, Iss. 12, 2015-12 ,pp. :




Research of Planetary Gear Fault Diagnosis Based on Permutation Entropy of CEEMDAN and ANFIS
By Kuai Moshen Cheng Gang Pang Yusong Li Yong
Sensors, Vol. 18, Iss. 3, 2018-03 ,pp. :

