Is Natural Language a Perigraphic Process? The Theorem about Facts and Words Revisited

Author: Dębowski Łukasz  

Publisher: MDPI

E-ISSN: 1099-4300|20|2|85-85

ISSN: 1099-4300

Source: Entropy, Vol.20, Iss.2, 2018-01, pp. : 85-85

Access to resources Favorite

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

As we discuss, a stationary stochastic process is nonergodic when a random persistent topic can be detected in the infinite random text sampled from the process, whereas we call the process strongly nonergodic when an infinite sequence of independent random bits, called probabilistic facts, is needed to describe this topic completely. Replacing probabilistic facts with an algorithmically random sequence of bits, called algorithmic facts, we adapt this property back to ergodic processes. Subsequently, we call a process perigraphic if the number of algorithmic facts which can be inferred from a finite text sampled from the process grows like a power of the text length. We present a simple example of such a process. Moreover, we demonstrate an assertion which we call the theorem about facts and words. This proposition states that the number of probabilistic or algorithmic facts which can be inferred from a text drawn from a process must be roughly smaller than the number of distinct word-like strings detected in this text by means of the Prediction by Partial Matching (PPM) compression algorithm. We also observe that the number of the word-like strings for a sample of plays by Shakespeare follows an empirical stepwise power law, in a stark contrast to Markov processes. Hence, we suppose that natural language considered as a process is not only non-Markov but also perigraphic.