Author: Haque Nafisul Cochrane Robert F. Mullis Andrew M.
Publisher: MDPI
E-ISSN: 2073-4352|7|4|100-100
ISSN: 2073-4352
Source: Crystals, Vol.7, Iss.4, 2017-04, pp. : 100-100
Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.
Abstract
The congruently melting, single phase, L12 intermetallic β-Ni3Ge has been subject to rapid solidification via drop-tube processing. Four different cooling rates are used in this process, at very low cooling rates (≥850 μm diameter particles, ≥700 K s−1) and slightly higher cooling rates (850–500 μm diameter particles, 700–1386 K s−1) the dominant solidification morphology, revealed after etching, is that of isolated spherulites in an otherwise featureless matrix. At higher cooling rates, (500–300 μm diameter particles, 1386–2790 K s−1 and (300–212 μm diameter particles, 2790–4600 K s−1) mixed spherulite and dendritic morphologies are observed. Indeed, at the higher cooling rate dendrites with side-branches composed of numerous small spherulites are observed. Selected area diffraction analysis in the TEM indicate that the formation of spherulites is due to an order-disorder transformation. Dark-field TEM imaging has confirmed that the spherulites appear to consist of lamellae of the ordered phase, with disordered material in the space between the lamellae. The lamellar width within a given spherulite is constant, but the width is a function of cooling rate, with higher cooling rates giving finer lamellae. As such, there are many parallels with spherulite growth in polymers.