Author: Liu Xiao Lai Xu Zou Jin
Publisher: MDPI
E-ISSN: 1996-1073|10|8|1231-1231
ISSN: 1996-1073
Source: Energies, Vol.10, Iss.8, 2017-08, pp. : 1231-1231
Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.
Abstract
In this paper, a missing wind speed data temporal interpolation and extrapolation method in the wind energy industry was investigated. Given that traditional methods have previously ignored part of mixed uncertainty of wind speed, a concrete granular computing method is constructed and a new Measure–Correlate–Predict (MCP) method of wind speed data temporal interpolation and extrapolation considering all mixed uncertainties is proposed, based on granular computing theory by adopting the cloud model method, support vector regression method, artificial neural network, genetic algorithm, and fuzzy c-means clustering algorithm as tools. The importance of considering mixed wind speed uncertainty and the suitability of using granular computing method are illustrated, and wind speed mixed uncertainty analysis is implemented, then, recommended values and estimation tools for wind speed measurement uncertainty and combined uncertainty are provided. An interpolation case of two practical meteorological sites in central Southern China was used to implement and validate the method proposed in this paper. The following conclusions are reached: (a) by using the method proposed in this paper, mixed uncertainty of wind speed can be considered, comparing to other MCP methods used for purposes of comparison, a better estimation of the wind speed is provided, and most evaluation metrics employed in this analysis were superior to other methods, that is to say, the accuracy of the wind resource assessment improved, and the risks of wind farm construction were reduced; (b) granular computing method is suitable for the issue of wind speed data interpolation and extrapolation considering wind speed mixed uncertainty; (c) mixed uncertainty of wind speed can be divided into three levels, and recommended values of granularity are minimum interval of records, 0.3–0.8 m/s, and 1–3 m/s, respectively.
Related content
A method for determination of wind speed persistence and its application
By Kocak K.
Energy, Vol. 27, Iss. 10, 2002-10 ,pp. :
Estimating wind speed distribution
Energy Conversion and Management, Vol. 43, Iss. 17, 2002-11 ,pp. :
Dependence of power law index on surface wind speed
By Hussain M.
Energy Conversion and Management, Vol. 43, Iss. 4, 2002-03 ,pp. :
Effect of wind speed on some designs of solar stills
Energy Conversion and Management, Vol. 41, Iss. 6, 2000-04 ,pp. :