

Author: Cozza Giorgio
Publisher: MDPI
E-ISSN: 1424-8247|10|1|26-26
ISSN: 1424-8247
Source: Pharmaceuticals, Vol.10, Iss.1, 2017-02, pp. : 26-26
Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.
Abstract
Casein kinase II (CK2) is an ubiquitous and pleiotropic serine/threonine protein kinase able to phosphorylate hundreds of substrates. Being implicated in several human diseases, from neurodegeneration to cancer, the biological roles of CK2 have been intensively studied. Upregulation of CK2 has been shown to be critical to tumor progression, making this kinase an attractive target for cancer therapy. Several CK2 inhibitors have been developed so far, the first being discovered by “trial and error testing”. In the last decade, the development of in silico rational drug design has prompted the discovery, de novo design and optimization of several CK2 inhibitors, active in the low nanomolar range. The screening of big chemical libraries and the optimization of hit compounds by Structure Based Drug Design (SBDD) provide telling examples of a fruitful application of rational drug design to the development of CK2 inhibitors. Ligand Based Drug Design (LBDD) models have been also applied to CK2 drug discovery, however they were mainly focused on methodology improvements rather than being critical for de novo design and optimization. This manuscript provides detailed description of in silico methodologies whose applications to the design and development of CK2 inhibitors proved successful and promising.
Related content


By Zhou Yue Zhang Na Qi Xiaoqian Tang Shan Sun Guohui Zhao Lijiao Zhong Rugang Peng Yongzhen
International Journal of Molecular Sciences, Vol. 19, Iss. 1, 2018-01 ,pp. :


By Haidar Samer Bouaziz Zouhair Marminon Christelle Laitinen Tuomo Poso Antti Le Borgne Marc Jose Joachim
Pharmaceuticals, Vol. 10, Iss. 1, 2017-01 ,pp. :






TRPV1: A Target for Rational Drug Design
By Carnevale Vincenzo Rohacs Tibor
Pharmaceuticals, Vol. 9, Iss. 3, 2016-08 ,pp. :