Deformable 3D–2D registration for CT and its application to low dose tomographic fluoroscopy

Author: Flach Barbara   Brehm Marcus   Sawall Stefan   Kachelrieß Marc  

Publisher: IOP Publishing

E-ISSN: 1361-6560|59|24|7865-7887

ISSN: 0031-9155

Source: Physics in Medicine and Biology, Vol.59, Iss.24, 2014-12, pp. : 7865-7887

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

Many applications in medical imaging include image registration for matching of images from the same or different modalities. In the case of full data sampling, the respective reconstructed images are usually of such a good image quality that standard deformable volume-to-volume (3D–3D) registration approaches can be applied. But research in temporal-correlated image reconstruction and dose reductions increases the number of cases where rawdata are available from only few projection angles. Here, deteriorated image quality leads to non-acceptable deformable volume-to-volume registration results. Therefore a registration approach is required that is robust against a decreasing number of projections defining the target position. We propose a deformable volume-to-rawdata (3D–2D) registration method that aims at finding a displacement vector field maximizing the alignment of a CT volume and the acquired rawdata based on the sum of squared differences in rawdata domain. The registration is constrained by a regularization term in accordance with a fluid-based diffusion. Both cost function components, the rawdata fidelity and the regularization term, are optimized in an alternating manner. The matching criterion is optimized by a conjugate gradient descent for nonlinear functions, while the regularization is realized by convolution of the vector fields with Gaussian kernels. We validate the proposed method and compare it to the demons algorithm, a well-known 3D–3D registration method. The comparison is done for a range of 4–60 target projections using datasets from low dose tomographic fluoroscopy as an application example. The results show a high correlation to the ground truth target position without introducing artifacts even in the case of very few projections. In particular the matching in the rawdata domain is improved compared to the 3D–3D registration for the investigated range. The proposed volume-to-rawdata registration increases the robustness regarding sparse rawdata and provides more stable results than volume-to-volume approaches. By applying the proposed registration approach to low dose tomographic fluoroscopy it is possible to improve the temporal resolution and thus to increase the robustness of low dose tomographic fluoroscopy.

Related content