Deep learning for studies of galaxy morphology

Publisher: Cambridge University Press

E-ISSN: 1743-9221|12|S325|191-196

ISSN: 1743-9213

Source: Proceedings of the International Astronomical Union, Vol.12, Iss.S325, 2017-05, pp. : 191-196

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract