Mimicking Class I b Mn2‐Ribonucleotide Reductase: A MnII2 Complex and Its Reaction with Superoxide

Publisher: John Wiley & Sons Inc

E-ISSN: 1521-3773|57|4|918-922

ISSN: 1433-7851

Source: ANGEWANDTE CHEMIE INTERNATIONAL EDITION, Vol.57, Iss.4, 2018-01, pp. : 918-922

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

AbstractA fascinating discovery in the chemistry of ribonucleotide reductases (RNRs) has been the identification of a dimanganese (Mn2) active site in class I b RNRs that requires superoxide anion (O2.−), rather than dioxygen (O2), to access a high‐valent Mn2 oxidant. Complex 1 ([Mn2(O2CCH3)(N‐Et‐HPTB)](ClO4)2, N‐Et‐HPTB=N,N,N′,N′‐tetrakis(2‐(1‐ethylbenzimidazolyl))‐2‐hydroxy‐1,3‐diaminopropane) was synthesised in high yield (90 %). 1 was reacted with O2.− at −40 °C resulting in the formation of a metastable species (2). 2 displayed electronic absorption features (λmax=460, 610 nm) typical of a Mn‐peroxide species and a 29‐line EPR signal typical of a MnIIMnIII entity. Mn K‐edge X‐ray absorption near‐edge spectroscopy (XANES) suggested a formal oxidation state change of MnII2 in 1 to MnIIMnIII for 2. Electrospray ionisation mass spectrometry (ESI‐MS) suggested 2 to be a MnIIMnIII‐peroxide complex. 2 was capable of oxidizing ferrocene and weak O−H bonds upon activation with proton donors. Our findings provide support for the postulated mechanism of O2.− activation at class I b Mn2 RNRs.

Related content