SOM-Based Class Discovery for Emotion Detection Based on DEAP Dataset

Publisher: IGI Global_journal

E-ISSN: 1942-9037|10|1|15-26

ISSN: 1942-9045

Source: International Journal of Software Science and Computational Intelligence (IJSSCI), Vol.10, Iss.1, 2018-01, pp. : 15-26

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

This paper investigates the possibility of identifying classes by clustering. This study includes employing Self-Organizing Maps (SOM) in identifying clusters from EEG signals that could then be mapped to emotional classes. Beginning by training varying sizes of SOM with the EEG data provided from the public dataset: DEAP. The produced graphs showing Neighbor Distance, Sample Hits, and Weight Position are examined. Following that, the ground-truth label provided in DEAP is tested, in order to identify correlations between the label and the clusters produced by the SOM. The results show that there is a potential of class discovery using SOM-based clustering. It is then concluded that by evaluating the implications of this work and the difficulties in evaluating its outcome.