Quantifying Primate Food Distribution and Abundance for Socioecological Studies: An Objective Consumer-centered Method

Author: Vogel Erin  

Publisher: Springer Publishing Company

ISSN: 0164-0291

Source: International Journal of Primatology, Vol.32, Iss.3, 2011-06, pp. : 737-754

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

Food abundance and distribution have played a central role in the conceptual theory of primate socioecology. This theory predicts that agonistic (contest) competition should occur when food is distributed in discrete, defensible patches; in contrast, when food sources are distributed uniformly or randomly, nonagonistic (scramble) competition is expected. Primatologists usually measure resource density and patchiness from a botanical perspective, without an explicit link to the biology of the animal being studied. Such an approach may be irrelevant to how the animals view the dispersion of resources. For studies related to feeding competition, we suggest the use of a method that provides a consumer-based index of food distribution. We then describe such an approach and apply it to understand agonistic behavior in white-faced capuchins (Cebus capucinus), at Lomas Barbudal. Instead of choosing sample plots at random, we use each actual feeding tree of a group as the center of a sample plot and we use the monkey species' average group spread as the sampling area. This focal tree method allows us to evaluate the resource availability both within and outside of the feeding tree during a particular feeding bout. To summarize the spatial distribution of food at the level of a foraging group, we define and use an extension of Lloyd's Dispersion Index, Lloyd's Extended Index (LEI), designed to allow the inclusion of resources of diverse sizes and species in a single measure. We evaluate if LEI can be used to predict the frequency of aggression, if changing the area of the plot alters these results, and if calculating LEI based on fruit abundance or fruit biomass better predicts the frequency of aggression in this population of capuchins. In support of socioecological predictions, our results show that the frequency of agonism in a focal tree declines as LEI increases. This relationship is significant when LEI is calculated using a 20-m plot size and weighting tree size by fruit counts, but not when using larger plot sizes, unweighted tree counts, or weighting by fruit biomass. Our approach demonstrates the importance of carefully considering plot size and different measures of food availability when testing socioecological models relating resource distribution and quality to aggression in nonhuman primates.