Silica matrices for embedding of magnetic nanoparticles

Author: Stoia Marcela  

Publisher: Springer Publishing Company

ISSN: 0928-0707

Source: Journal of Sol-Gel Science and Technology, Vol.62, Iss.1, 2012-04, pp. : 31-40

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

This paper presents a study regarding the formation of hybrid gels starting from tetraethyl orthosilicate (TEOS), polyvinyl alcohol (PVA) and 1,3-propanediol (PD) and their thermal evolution to mesoporous silica matrices. The possibility of obtaining homogenously dispersed cobalt ferrite inside the silica matrix starting from (TEOS-PVA-PD-Metal Nitrates) gels was also studied. The formation of the hybrid gels TEOS/PVA/PD with different compositions was studied by FT-IR spectrometry and thermal analysis, in order to evidence the interaction between the diol with the organic and the inorganic polymers. Both thermal analysis and FT-IR spectrometry have evidenced the formation of physical and chemical interaction between polyols and the siloxane network. Elemental mapping performed by SEM-EDX technique evidenced the formation of homogenous hybrids both in the presence of the absence of 1,3-propanediol. SEM images of the powders obtained by annealing the hybrid xerogels at 600 °C have evidenced the formation of mesoporous silica. By thermal treatment of the (TEOS-PVA-PD-Metal Nitrates) gels, 30%CoFe2O4/70%SiO2 (mass percent) nanocomposites uniformly dispersed in silica matrix with characteristic magnetic properties, have been successfully synthesized.

Related content