Stoichiometry and stability of cellulose-hydrazine complexes

Author: Su Xiaobo  

Publisher: Springer Publishing Company

ISSN: 0969-0239

Source: Cellulose, Vol.18, Iss.3, 2011-06, pp. : 531-537

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

Highly crystalline cellulose samples from green algae (cellulose I) and mercerized ramie (cellulose II) were treated with anhydrous hydrazine and the resulting complexes were analyzed by synchrotron X-ray diffraction and thermogravimetry. Cellulose I-hydrazine complex could be fully described by a two-chain monoclinic unit cell, a = 0.879 nm, b = 1.076 nm, c = 1.038 nm, and γ = 122.0°, with space group P21. Cellulose II-hydrazine complex prepared from mercerized ramie gave a different two-chain monoclinic unit cell, a = 1.042 nm, b = 1.046 nm, c = 1.038 nm, γ = 129.7°, also with space group P21. Though having different crystal structures, the number of hydrazine molecules per glucopyranoside residue was 0.82 for cellulose I-complex and 0.93 for cellulose II-complex, probable stoichiometric value of 1.0. Hydrazine could be extracted from the complexes by organic solvents retaining the crystalline orders, resulting in the allomorphic conversion to cellulose IIII and cellulose IIIII, both having non-staggered chain arrangements. These features are similar to those of cellulose-ethylenediamine complexes.