A Distance-based Prior Model Parameterization for Constraining Solutions of Spatial Inverse Problems

Author: Suzuki Satomi  

Publisher: Springer Publishing Company

ISSN: 1874-8961

Source: Mathematical Geosciences, Vol.40, Iss.4, 2008-05, pp. : 445-469

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

Spatial inverse problems in the Earth Sciences are often ill-posed, requiring the specification of a prior model to constrain the nature of the inverse solutions. Otherwise, inverted model realizations lack geological realism. In spatial modeling, such prior model determines the spatial variability of the inverse solution, for example as constrained by a variogram, a Boolean model, or a training image-based model. In many cases, particularly in subsurface modeling, one lacks the amount of data to fully determine the nature of the spatial variability. For example, many different training images could be proposed for a given study area. Such alternative training images or scenarios relate to the different possible geological concepts each exhibiting a distinctive geological architecture. Many inverse methods rely on priors that represent a single subjectively chosen geological concept (a single variogram within a multi-Gaussian model or a single training image). This paper proposes a novel and practical parameterization of the prior model allowing several discrete choices of geological architectures within the prior. This method does not attempt to parameterize the possibly complex architectures by a set of model parameters. Instead, a large set of prior model realizations is provided in advance, by means of Monte Carlo simulation, where the training image is randomized. The parameterization is achieved by defining a metric space which accommodates this large set of model realizations. This metric space is equipped with a “similarity distance” function or a distance function that measures the similarity of geometry between any two model realizations relevant to the problem at hand. Through examples, inverse solutions can be efficiently found in this metric space using a simple stochastic search method.