Hydraulics of Peat Filters Treating Septic Tank Effluent

Author: Kennedy P.  

Publisher: Springer Publishing Company

ISSN: 0169-3913

Source: Transport in Porous Media, Vol.41, Iss.1, 2000-10, pp. : 47-60

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

Peat is an alternative filter medium for the treatment of various waste streams including septic tank effluent. The water holding capacity and adsorption capacity of peat make it a favorable filter medium over sand or gravel which are commonly used as the filter medium for the drainage field of septic systems. This paper presents the results of a field study to evaluate the hydraulics of a peat filter used to treat the septic tank effluent from a public school west of Ottawa, Canada. An experimental box was placed within the filter during its construction to provide access to the vertical profile of the peat layer. The filter is periodically pulsed with septic tank effluent, which is distributed over the top of the filter and flows vertically through the peat. The filter was instrumented with tensiometers and transducers to monitor the pore water pressures in response to a pulse of septic tank effluent. An in-depth study of the hydraulics of the system was completed. The soil moisture retention curve and the hydraulic conductivity as a function of density were determined in laboratory experiments. A one-dimensional unsaturated flow model was used to predict the pressure response due to a pulse. A comparison of the field and model results illustrates the impact of the density variations, and the corresponding hydraulic conductivity variations, on the model predictions. The compaction of the peat is an important design consideration for the filter since it directly impacts the flow characteristics and the hydraulic retention time within the filter.