Bayesian Maximum Entropy Analysis and Mapping: A Farewell to Kriging Estimators?

Author: Christakos G.  

Publisher: Springer Publishing Company

ISSN: 0882-8121

Source: Mathematical Geology, Vol.30, Iss.4, 1998-05, pp. : 435-462

Disclaimer: Any content in publications that violate the sovereignty, the constitution or regulations of the PRC is not accepted or approved by CNPIEC.

Previous Menu Next

Abstract

The Bayesian Maximum Entropy (BME) method of spatial analysis and mapping provides definite rules for incorporating prior information, hard and soft data into the mapping process. It has certain unique features that make it a loyal guardian of plausible reasoning under conditions of uncertainty. BME is a general approach that does not make any assumptions regarding the linearity of the estimator, the normality of the underlying probability laws, or the homogeneity of the spatial distribution. By capitalizing on various sources of information and data, BME introduces an epistemological framework that produces predictive maps that are more accurate and in many cases computationally more efficient than those derived by traditional techniques. In fact, kriging techniques can be derived as special cases of the BME approach, under restrictive assumptions regarding the prior information and the data available. BME is a more rigorous approach than indicator kriging for incorporating soft data. The BME formulation, in fact, applies in a spatial or a spatiotemporal domain and its extension to the case of block and vector random fields is straightforward. New theoretical results are presented and numerical examples are discussed, which use the BME approach to account for important sources of knowledge in a systematic manner. BME can be useful in practical situations in which prior information can be used to compensate for the limited amount of measurements available (e.g., preliminary or feasibility study levels) or soft data are available that can be combined with hard data to improve mapping significantly. BME may be then viewed as an effort towards the development of a more general framework of spatial/temporal analysis and mapping, which includes traditional geostatistics as its limiting case, and it also provides the means to derive novel results that could not be obtained by traditional geostatistics.